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Intense fluid motions can be generated by the solidification of a binary liquid. This 
review paper describes systematically some of the concepts involved in the fluid 
mechanics of solidification. It also presents quantitative calculations for the fluid 
motion, the rate of growth of solid and the evolution of both the thermal and the 
compositional fields in various geometries. The results of many of the calculations are 
favourably compared with data from laboratory experiments using aqueous 
solutions. 

1. Introduction 
The subject of fluid mechanics is taught to students and studied by some of the 

staff in almost all departments of applied mathematics and engineering. I n  addition, 
aspects of the subject that  can be related to the currently fashionable area of chaos 
have generated considerable excitement in many departments of physics (Gleick 
1988). The subject of solid mechanics is also taught and studied in many of the same 
departments. The relative strengths in the two areas varies of course from 
department to department and in an interesting way from country to country. The 
transition from fluid to solid, however, is far less frequently addressed. Such 
transitions are very important to metallurgists who consider how melts solidify in 
complicated shaped moulds to form solid products. Geologists are trained to  evaluate 
the conditions of temperature, concentration and pressure under which a silicate 
melt will solidify a t  thermodynamic equilibrium, but the fluid-mechanical processes 
which interact with solidification have, by and large, been incorporated into 
geological models only recently. A good course in physics includes a discussion of the 
atomic rearrangement accompanying solidification but macroscopic analyses and the 
resulting fluid dynamical effects are rarely included. 

The aim of this paper is to review some of the recent work on the fluid-mechanical 
phenomena that accompany and can play an important role in solidification. In 
particular, it  will discuss a new slant on the general approach of continuum 
mechanics that needs to be introduced to analyse the formation of mushy zones and 
slurries; regions in which fluid and solid coexist. The topic suggests many new 
research problems from both a theoretical and an experimental point of view which 
may be found attractive to applied mathematicians, engineers and fluid dynamicists 
as well as being of fundamental importance to at  least crystal growers, geologists and 
metallurgists. 

Fluid mechanics can play a fundamental role in the phase transitions that 
accompany solidification because when a liquid of two or more components solidifies, 
the composition of the solid product generally differs from that of t h e  original liquid. 
For example, salty water in the polar oceans freezes to form almost pure ice, while 
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in the semi-conductor industry melts containing comparable quantities of gallium 
and germanium could be partially solidified to form almost pure germanium. The 
difference in composition between liquid and solid implies that the composition of the 
liquid in the neighbourhood of the solidification front can be different from that 
further away. This difference in composition is generally associated with a difference 
in density, which can drive fluid motions, transport both heat and mass convectively 
and alter the rate and maybe even the mode of the solidification processes. 

There are a number of different approaches that have been used to investigate 
solidification phenomena. One is to consider the growth of individual crystals 
following the famous similarity solution determined originally by Ivantsov (1947) for 
the steady growth from a one-component melt of a single crystal modelled as a 
paraboloid of revolution. This shape was found theoretically to be unstable to 
secondary and tertiary side branches (Langer 1980) which are a common feature in 
some crystals, in particular snow flakes. (An interesting survey appears in chapters 
3 and 4 of Kurz & Fisher 1986.) The most recent developments on systems free of 
surface energy are lucidly described by Canright & Davis (1989), who investigate the 
similarity solution for the growth from a multi-component melt of a single crystal 
with the interface between fluid and solid modelled as a general quadric surface. 
Their study also includes the effects of both a nonlinear phase diagram at 
thermodynamic equilibrium and cross-diffusion due to either the Soret or Dufour 
effects. Some fluid mechanics has been included in the investigation by the 
incorporation of a flow a t  low Reynolds number past the crystal, but neglecting any 
effects due to  gravity (Ananth & Gill 1988, 1989 and Canright & Davis 1989). In 
addition, an extremely elegant series of experiments on doubly purified succinonitrile 
has been conducted by Glicksman and his colleagues and led to  the photographs 
reproduced as figure 1 in Glicksman, Coriell & McFadden (1986). The experiments 
demonstrated that gravity can play a dominant role, a t  least in determining the 
shape of a single crystal. However, no theoretical investigation has to my knowledge 
been undertaken of the coupling between solidification and the fluid mechanics of 
convection driven by the growth of a single crystal in a gravitational field. 
Furthermore, it is not a t  all clear how to use the results for the growth of a single 
crystal to predict effects arising from the macroscopic growth of a field of crystals. 

Another approach is to employ numerical simulations. This will be particularly 
important for assessing the effects of solidification in complex industrial moulds. 
Some concepts have been elucidated by this approach and are comprehensively 
reviewed by Brown (1988). However, many numerical schemes neglect any fluid 
motions and i t  is sometimes difficult to find the fundamental principles hidden in the 
vast quantity of numerical output. 

A third approach, parts of which I intend to review here, is to consider a series of 
situations which sequentially bring out the main concepts involved in the fluid 
mechanics of solidification. The review inevitably emphasizes the contributions I 
have made, often in collaboration with my colleagues both in Cambridge and a t  the 
Australian National University. Reviews written with different emphases include 
Langer (1980), Coriell, McFadden & Sekerka (1985), Glicksman et al. (1986), Langer 
(1987), some of the papers published and listed in the bibliography in Loper (1987) 
and Davis (1990). 

My own investigations in this field commenced with the consideration of the 
principles involved in the fundamental situation of cooling an initially homogeneous 
two-component melt at a single horizontal boundary (Huppert & Worster 1985). We 
identified six different flow regimes dependent upon whether the cooling takes place 
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at an upper or lower boundary to the melt and whether the density of the Auid 
released on solidification is the same, greater or less than that of the melt. This 
differentiation between the flow regimes is one of the major concepts upon which the 
review is based. 

In the next section we consider the cooling from below of a liquid which is 
compositionally identical to its solidified product. We identify the situation as a 
classical Stefan problem, a problem which has no fluid-mechanical ingredient. In  $ 3  
we consider the influence of the unstable thermal field that results from cooling such 
a fluid from ahove. Section 4 incorporates effects due to compositional differences for 
the first time by considering the cooling and crystallizing from below of a liquid that 
releases fluid of greater density when solidifying. We indicate that the moving 
interface between fluid and solid is generally unstable, which leads to the formation 
of a mushy layer. We describe a simple theoretical model for this mushy layer and 
demonstrate that predictions of the model agree well with data from our laboratory 
experiments. 

In  $5  we extend the theoretical model in a study of the solidification by cooling 
from above a liquid which also releases less dense fluid. Assuming first that 
solidification occurs a t  thermodynamic equilibrium and that the cooling temperature 
exceeds the eutectic temperature, we determine the rate of growth of the mushy layer 
that forms on the roof. The agreement between the theoretical predictions and the 
laboratory data is good, but not perfect. The agreement is improved on the 
incorporation of non-equilibrium effects into the model by specifying a relationship 
between the rate of growth of the mushy layer and the non-equilibrium undercooling 
a t  the interface between mush and liquid. 

Effects due to lowering the cooling temperature below the eutectic temperature are 
discussed in $6. We describe how this can lead to compositional stratification in the 
solid. In  addition, we explain how cooling a t  the top of a container can lead to 
solidification a t  the base - a result relevant to the cooling of a large magma chamber, 
or storage chamber of liquid rock, from above. The special effects observed when 
cooling aqueous ammonium chloride are briefly described in $7 .  Global two- 
dimensional effects, which result from cooling a t  either a vertical or a sloping wall, 
are discussed in $5 8 and 9. A very brief description of some of the applications of our 
general concepts makes up $ 10 which is followed by a short concluding section. 

Any study of solidification must be based on the phase diagram, which specifies the 
possible states of liquid and solid a t  thermodynamic equilibrium as a function of 
temperature and composition (and possibly also pressure). Readers who are 
unacquainted with the concepts of phase diagrams may care to read Kurz & Fisher 
(1986) along with the brief description that follows. A typical phase diagram for a 
two-component system, made up of components A and B, is sketched in figure 1. 
Above the liquidus, which has two branches, the system is totally liquid. If the 
temperature falls below the liquidus, a solid whose composition is given by the 
appropriate branch of the solidus is formed. Liquids with initial compositions 
between A and C ,  first crystallize a and follow the liquidus curve as they cool. The 
remaining liquid is residually enriched in component B and its bulk density increases. 
When the liquid composition reaches the eutectic a t  E, b begins to crystallize and the 
two phases a and b continue to solidify a t  the fixed temperature TE until all the liquid 
is consumed. A liquid with initial composition between C, and B would follow a 
similar course but crystallizes b first rather than a and the residual liquid decreases 
in bulk density. Thus above the eutectic temperature TE (and still below the liquidus 
curve), liquid and solid phases can coexist. For temperatures below the eutectic line, 
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FIGURE 1 .  A typical phase diagram for a binary mixture, made up  of components A and B, which 
indicates the phases at thermodynamic equilibrium as functions of temperature, Z’, and 
concentration of component B, which is denoted by C. The dashed vertical lines at constant 
concentration represent the solidii for most aqueous solutions. 

only solid phases can form, a t  least under the constraint of thermodynamic 
equilibrium. For almost all aqueous solutions the solidii are vertical which means 
that the composition of the solid formed is independent of temperature (and thus a 
and A coincide as do b and B). 

Density in the liquid is generally a very much stronger function of composition 
than of temperature, as is sketched in figure 1 .  This is the explanation of why a melt 
whose Composition is less than the eutectic composition C, releases more dense fluid, 
while a melt whose composition exceeds C, releases less dense fluid when the fluid is 
cooled and solidified. 

2. The classical Stefan problem 
One of the simplest situations in which a melt undergoes a phase change and is 

transformed into a solid is as follows. The semi-infinite region 2 > 0 consists of 
material which is initially liquid and a t  uniform temperature T,. At t = 0 the 
temperature at the base of the fluid a t  z = 0 is suddenly lowered to TB and 
subsequently maintained a t  that value, which is less than the solidification 
temperature of the melt, T,, as depicted in figure 2 .  The problem is to determine the 
position of the unknown, moving solidifying interface, s ( t ) ,  and the temperature 
distributions, T(z,  t ) ,  in both the liquid and the solid phase in this one-dimensional 
problem. 

Our analysis commences with the assumption that there is no motion in the melt 
and that compositional effects play no role in the solidification. This requires the 
constituents of the melt and the solid to be identical. Generally this means a onc- 
component, or pure, melt, such as water or liquid gold for example; with respect to 
the phase diagram that makes up figure 1 we are considering the composition to be 
either pure A or pure B. However, binary melts of eutectic composition C, also 
produce solids that have the same composition as the original liquid. Throughout the 
discussion we shall neglect any difference in density between solid and liquid, which 
is generally a small effect. The requirement of no motion then means that the thermal 
field must be stably distributed, which for those melts whose density increases with 
temperature indicates that thc z-axis is directed vertically upwards. 
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FIGURE 2.  Sketch of the temperature profile and notation for a semi-infinite one-component 
melt cooled from below. 

Mathematically, the problem requires the solution of the heat-conduction 
equations 

= K,T,, (0 < z d s ( t ) )  (2 . la )  

and = K, T,, (44 d z ) ,  (2.16) 

where K is the thermal diffusivity, with subscripts s and m denoting values in the 
solid and melt, respectively. The regions occupied by the two phases are linked by 
the conservation of heat flux a t  the interface, which can be written 

L Z ~  = k s ~ l ~ - - k m ~ l s + ,  ( 2 . 2 )  

where 9 is the latent heat per unit volume of solid and k is the thermal conductivity. 
Finally, there are the boundary conditions on the temperature 

T = T B  ( x = O ) ,  T+T, (.z+mort+O). (2.3a, b )  

Because there is no externally imposed lengthscale in the problem, a similarity 
solution must exist of the form 

s(t)  = 2 A 2 ( K s : , ) a ,  (2.41 

with A, satisfying an eigenvalue relationship of the form 

F ( A 2 ; Y , -  TCU-T, - k, -1 K ,  = 0 
T,-TB’k,’Km 

(Carslaw & Jaeger 1959, 3 11.2), where the Stefan number 

(2.6) 

and c, is the specific heat per unit volume of the solid. The Stefan number represents 
the ratio of two quantities: the latent heat needed to transform the melt into solid 
and the heat needed to cool the solid from its solidification temperature to the 
temperature a t  the boundary. 

The solution (2 .5)  appears to have been first presented by Lam6 & Clapeyron 
(1831). It was then discussed in a famous series of (unpublished) lectures given by 
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Neumann in Konigsberg in the early 1860’s and reappeared in Stefan (1889). It is the 
solution of the simplest of a huge variety of moving boundary problems involving 
melting or solidification generally known as ‘Stefan problems ’. Admirable discussions 
of Stefan problems are contained in Crank (1984), Hill (1987) and references therein. 
Very few exact analytical solutions exist and the area has been a haven for applied 
mathematicians who have developed a variety of approximate and/or numerical 
techniques to obtain solutions. 

But, of course, no fluid dynamics is involved; indeed hardly even fluid statics. 

3. Cooling a pure melt from above 
Fluid mechanics becomes involved if the situation considered in figure 2 is inverted 

to form figure 3 ( a )  and the pure melt is considered to be cooled from above. The 
resulting temperature in the melt increases with depth and thus a fluid instability is 
possible. A combined experimental and theoretical investigation of the conditions for 
which inst,ability is initiated and the form of convection in the melt has been carried 
out  by Davis, Muller & Dietsche (1984) and Dietsche & Muller (1985). They held the 
temperatures TA and T, a t  the lower and upper boundaries fixed and determined, 
from the solution of a steady-state problem, the critical value of the Rayleigh 
number 

(3.1) Ra = eg(TA-!ZL) ( H - - s ) ~ / K ,  v 

for the onset of convection as a function of the ratio, say d ,  of the depths of solid 
and liquid in static equilibrium, with 

(3.2a, b )  

where a: is the coefficient of expansion, g the acceleration due to gravity and H the 
total depth of the system. They then employed weakly nonlinear perturbation 
theory to predict the form of the convective motions -rolls, hexagons or mixed 
polygonal rolls - for Rayleigh numbers just  above critical. These theoretical 
predictions were in good qualitative agreement with their experiments using 
cyclohexane, which showed picturesque deformations at  the interface between solid 
and melt due to convection coupled to the melting and freezing. 

Numerous theoretical studies of directional solidification have been undertaken 
using the techniques of weakly nonlinear perturbation theory (see, for example, 
Coriell et al. 1985). There has been some agreement between the theoretical results of 
these studies and experimental observations, but generally, in natural, industrial and 
even most experimental situations, the conditions are well away from those for which 
weakly nonlinear theory is applicable. 

When, for example, in the geometry considered by Davis et al. (1984), the Rayleigh 
number is very much larger than the critical value and sufficiently high that the 
convection in the melt is turbulent, a different parameterization to the one they 
considered is appropriate. Turner, Huppert & Sparks (1986, herein referred to as 
THR) examined the situation depicted in figure 3 ( b )  where the lower boundary is 
insulated, rather than being maintained at a fixed temperature. This allows the 
temperature to evolve with time and leads eventually to  total solidification. The 
relevant conduction equation in 0 < z < s( t )  is again given by ( 2 . 1 ~ ) .  I n  the melt the 
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FIGURE 3. Sketch of the temperature profile and notation for a one-component melt of initial depth 
H cooled from above. Note that  in (a) the  lower boundary is at a fixed temperature while in ( b )  the  
lower boundary is insulated. 

heat transfer can be described by the well-known four-thirds law (Turner 1979) so 
that 

(3.3a, b )  

where 0 is the mean temperature of the melt, FT is the thermal flux a t  the interface 
and y is an empirical constant. The interfacial condition (cf. (2.2)) is 

k ,  qS- = FT + [c,(e- T,) + 9 p .  (3.4) 

This equation represents a balance of the conductive transfer through the solid with 
the convective transfer in the melt in addition to the heat released by decreasing the 
temperature of the melt to the solidification temperature and then solidifying it. 
Each of these terms is always positive and so in particular the term on the left-hand 
side always contributes in an essential way to the heat balance. Either of the other 
two terms may also dominate the heat balance and this leads to three different 
regimes. Within each regime conduction balances either convection, latent heat 
release or both, as discussed a t  length by THS. They present both asymptotic and 
numerical solutions to the equations as well as data from a variety of experiments 
which, as far as they go, support the theoretical predictions. It might be interesting 
to carry out further experiments in parameter ranges different from those treated 
experimentally by THS yet falling within the range of their theory. 

4. Cooling a binary alloy from below 
Some of the fluid-mechanical effects due to compositional differences between melt 

and solid can now be easily introduced by investigating the solidification that results 
from cooling a binary alloy from below. We first consider the situation in which the 
fluid released by the solidification process is relatively dense and so ponds above the 
solid. We shall assume the solid to be of fixed composition (a vertical solidus) as will 
result, for example, if ice is formed from the cooling of an aqueous solution. We also 
assume, a t  least initially, that the interface a t  x = s(t) between solid and melt is flat 

8 FLM 212 
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FIGURE 4. Sketch of the stably distributed temperature and composition profiles for a semi-infinite 
binary melt cooled from below t o  form a stable one-dimensional interface between melt and solid 
on the release of melt whose density exceeds that  of the original melt. 

(and horizontal) so that the problem is totally one-dimensional. No motion will occur 
in the melt and the transport of both heat and chemical components is entirely by 
molecular diffusion. This leads to profiles of both temperature and composition 
which are stably distributed, as is sketched in figure 4. 

The equations governing the temperature profiles are exactly as in $ 2 :  the heat- 
conduction equation (2.1), the thermal conservation condition (2.2) and the thermal 
boundary condition (2.3). The compositional profile relative to that in the solid 
C(z,t) is governed in the melt by 

C, = DC,, ( 4 t )  d z ) ,  (4.1) 
where D is the coefficient of compositional diffusivity, while the composition in the 
solid will be expressed as C = 0. Conservation of solute requires that 

Ci+DC, = 0 ( z  = s ( t ) + )  (4.2) 

and the initial, or far-field, condition on the composition, to complement that on the 
temperature ( 2 , 3 b ) ,  is 

As briefly discussed in the introduction, in a binary liquid that solidifies at 
thermodynamic equilibrium, the temperature of solidification T, and the composition 
of the melt a t  the interface are connected by the liquidus relationship. In many 
situations a linear relationship of the form 

C + C ,  ( z +  m ort-to).  (4.3) 

T = -m,C, (4.4) 
where mL is a positive constant, is an adequate approximation. Note that the form 
of (4.4) assumes the liquidus temperature is zero a t  zero concentration. 

The mathematical system (2.1)-(2.3), (4.1)-(4.3) and (4.4) applied a t  z = sft) 
admits a similarity solution of the form 

s = 2A,(Dt)i, (4.5) 
with A, satisfying an eigenvalue relationship of the form 

- Tm-TL TL k, K, D 
TL- TB’ TB’ k,’ K,’ K, 

A4;S@,- - - - - ) = 0  
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(Rubenstein 1971; Worster 1983; Huppert & Worster 1985), where the modified 
Stefan number 

and TL = -mLC, is the liquidus temperature at the initial concentration. The 
resulting temperature and composition fields are drawn in figure 4. 

Huppert & Worster (1985) carried out a series of experiments in which aqueous 
solutions of NaNO,, NaCl and NH,Cl were cooled in the apparatus sketched in figure 
5. In each experiment, after a short initial period the thickness of the solid block (ice) 
increased with the square root of time, as predicted by (4.5). Four typical results for 
the measured growth-rate eigenvalue A, a t  different initial compositions C, are 
plotted in figure 6 and compared with the theoretical relationship (4.6). The 
agreement is abysmal. Why ? 

The reason for the disagreement is that under almost all conditions the solid, in 
this case ice, does not grow with a stable planar interface. During solidification, 
solute is removed from the melt and a diffusion profile develops in that part of the 
melt that is adjacent to the interface between melt and solid. In the one-dimensional 
growth sketched in figure 4 the relatively slow compositional diffusion, which is 
governed by the value of D( + K, or K ~ ) ,  constrains the rate of growth of the interface. 
Instead, the interface in the experiments becomes highly irregular, as seen in the 
photographs of ice reproduced in figure 7 (plate 1). The initial breakup of a planar 
interface is known as morphological instability and was considered at a qualitative 
level by Rutter & Chalmers (1953). They suggested that instability occurred 
whenever 

because the temperature and composition fields predicted by the one-dimensional 
model on the melt side of the interface would then be below the liquidus, which 
implies (inconsistently) that the melt is in the solid field. Quantitative dynamical 
calculations (but neglecting convective motions in the melt) were undertaken some 
years later by Mullins & Sekerka (1964) to lead to the instability criterion 

-mLCz > T,(> 0) ( z  = s ( t ) + )  (4.8) 

(4.9) 

if surface tension effects a t  the interface are ignored. This criterion reverts formally 
to (4.8) if k, is set equal to zero. Because the thermal and compositional field are both 
stably stratified no convection can take place in the melt. This is in contrast to the 
case where the solidification releases light fluid, although numerical calculations 
incorporating the possibility of convection in the melt (Coriell et al. 1980 and Hurle, 
Jakeman & Wheeler 1982) lead to results which under usual conditions differ little 
from either (4.8) or (4.9). A nice general review of the interaction between 
solidification and linear convection is presented in Glicksman et al. (1986) and a 
section in Davis (1990) is also devoted to this topic. All calculations indicate that 
only for very small values of both the undercooling T, - TB and resulting interfacial 
velocity 9 is the interface stable, as is presented quantitatively by Huppert & 
Worster (1985) in their figure 1. Paradoxically, no experiment has yet been 
performed that distinguishes between the slightly different predictions embodied in 
(4.8), (4.9) and the numerical calculations including the effects of linear convection 
in the melt. This reflects the fact that  only for very special conditions will the planar 
interface be stable. 

In  order to reconcile theory and experiment, Huppert & Worster (1985) developed 

8-2 
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FIGURE 5 .  Sketch af  the  apparatus used by Huppert & Worster (1985) to cool and solidify 
various aqueous solutions. 
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FIGURE 6. The non-dimensional growth rate A, as a function of the initial far-field composition, C,, 
for stable, one-dimensional solidification from below of aqueous NaNO, with T, = - 17 "C and 
T, = 15 "C. The solid curve represents the theoretical relationship (4.6) and the crosses represent 
experimental data .  

a simple model of the solidification which incorporated a mushy layer in which solid 
and melt coexist, as observed in their experiments. They postulated that the mush 
could be described by EL constant solid fraction, 4, and that global conservation 
equations, consistent with this idea, could be used to  describe the transitions in the 
mushy layer. The resulting thermal and compositional fields are sketched in figure 8. 
The temperature field satisfies 

= R E z  (0 < 2 < s ( t ) )  (4.10~) 

= K,Tzz (s ( t )  < 2 )  (4.10 b )  

and 
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FIGURE 7. A photograph taken in the vertical plane which reveals the form of the resulting product 
obtained by cooling an aqueous solution of NaNO, to form ice, Note the uneven upper surface and the 
almost vertical crevices in the solid ice which contain compositionally enriched fluid. The horizontal scale 
beneath CB225 is 2 cm long. Conditions of the experiment: & = -16.5"C, T = 14.7"C, C = 14 wt% 
NaNO , . 

FIGURE 14. A photograph taken during an experiment in which an aqueous solution of Na,SO, was 
cooled from above to fprm a composite layer next to the roof of the tank, a mushy layer below this and 
a layer of faceted Na,SO,.lOH,O crystals at the base. The experimental conditions were: Co = 16 wt % 
Na,SO,, To = 30.5"C, TB = -17"C, and ff = 18.8 cm. 

HUPPERT (Facing p.  218) 
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FIGURE 19. Four views of an experiment in which a 26 wt X solution of aqueous NH,C1 with a small 
amount of green dye added is cooled from below. (a) A vertical view taken in shadowgraph showing plumes 
rising from individual vents. (b) A vertical view of the NH,C1 crystals, after draining off all remaining 
fluid, which shows clear secondary and tertiary branching behind the crystal tips. The photograph 
represents approximately 8 mm in the horizontal. (c) An oblique view of the tops of the chimneys from 
which plumes rise. (d) A horizontal view of an individual vent after all the fluid has been drained off. 

HUPPERT 
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FIGURE 19 (c. d). For caption see Plate 2. 

FIGURE 20. A vertical shadowgraph view of a 13 wt % solution of Na,CO, cooled from below with 
7'' = -20°C. Compare the form of the flow field with that of figure 19 (a). 

HUPPERT 
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FIGURE 22. A photograph of an experiment cooling two containers of aqueous Na,COI at a vertical wall. 
In both containers Co = 13 wt %, To = 19"C, TB = -20°C. The dye trace results from KMnO, crystals 
inserted into the liquid 3 min before the photograph was taken. 

FIGURE 25. A photograph of an experiment cooling an aqueous solution of Na,CO, at a 45" slope with 
Co = 13 wt %, To = 19"C, TB = -20°C. The dye trace results from KMn03 crystals inserted into the 
liquid 4 min before the photograph was taken. 

HUPPERT 
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FIGURE 8. Sketch of the temperature and composition profiles for a semi-infinite binary melt cooled 
from below to form a mushy layer on the release of liquid whose density exceeds that of the original 
melt. 

where an overbar denotes values in the mush. These quantities are evaluated using 
averages weighted by the volume fraction to obtain 

I = $ k s + ( l - $ ) k m  = m, (4.11a, b )  

where c =  $c ,+ ( l -$ )cm.  ( 4 . 1 1 ~ )  

The representation (4.1 1 a )  is a good approximation for a random mixture of solid 
and liquid and becomes exact if the solid dendrites are of constant width and grow 
vertically (Batchelor 1974). The expression (4 .11~)  is always correct. In  the mushy 
layer the composition is either zero in the solid dendrites or at the local liquidus in 
the interstitial melt; that is 

(4.12) 

The composition field in the melt is negligibly influenced by the rapid growth of the 
mushy layer because of the small value of the compositional diffusivity, and so 

c = c, ( s ( t )  d 2 ) .  (4.13) 

C = -TT/mL (0 < z d s( t )  within the interstitial melt). 

Global conservation of solute requires that 

( 1  - $) r") C(z, t )  dz = s( t )  C,. 
0 

(4.14) 

In the model, conservation of solute is achieved by increasing the concentration of 
the melt within the interstices rather than pushing solute ahead of the advancing 
solidification front. The growth of solid is thus not constrained by the relatively slow 
molecular diffusion of composition. 

The system comprising (4.10)-(4.14), the boundary and initial conditions on the 
temperature field (2 .3)  and the liquidus relationship (4.4) applied at  the tips of the 
dendrites (at z = s ( t ) )  has solution 

8 = 2h4(K, t);, (4.15) 
- 

where A, satisfies an equation of the form 

(4.16a) 

with (4.166) 
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while (4.17) 

is the Stefan number across the mushy layer. 
The predictions of the growth rate h4 obtained by this approach are seen to agree 

well with the results of our laboratory experiments, as is shown in figure 9 for one 
particular series of experiments. Also plotted in the figure is the theoretical value for 
the (constant) solid fraction 4. At the time of the work I did not know how to 
measure the solid fraction to  compare with the predictions. It was suggested to me 
that an acoustical measurement based on the vastly different speeds of sound in solid 
and liquid might be possible. This technique proved to be impossible, however, owing 
to acoustical absorption and scattering in the complex medium. Over the summer of 
1989 T. G. L. Shirtcliffe, during a research visit to  Cambridge, developed and tested 
a technique based on differences in electrical conductivity. We plan to write a paper 
presenting the results in the near future. 

The good agreement between the experimental results and the predictions of a 
model in which the solid fraction was assumed constant throughout was somewhat 
surprising. Indeed a referee of Huppert & Worster (1985) wrote in his report: ‘The 
explanation of this fact will be challenging to readers (including myself if I could find 
the time!)’. The challenge was taken up by Worster (1986). He allowed the solid 
fraction to change in both space and time. Within the mushy layer the local 
conservation of heat and composition was written as 

E l ;  = ( L Q ,  + 9q5t (4.18) 

and 

where the last term in each of (4.18) and (4.19) represents the release of latent heat 
into the mush and the release of solute into the interstitial fluid respectively. The 
introduction of a first-order spatial derivative of 4 into the mathematical model 
indicates that an additional boundary condition is required. Worster (1986) argued 
that the appropriate condition is that  of equilibrium saturation, or marginal 
equilibrium, in the melt just ahead of the growing dendrites, which is expressed as 

T , = -  mL c, ( z  = s( t )  + ). (4.20) 

He showed further that  (4.20) under most circumstances is equivalent to the 

(4.21) 
condition 

From the complete system of equations Worster found that there was a similarity 
solution for which the top of the mush was specified by 

s = 2h,(Dt)k (4.22) 

Figure 10 graphs the result for one particular set of parametric values and allows a 
comparison to be made both with x,, obtained by the simpler method outlined above, 
and with the experimental data. The agreement with both is seen to be very good. 
Indeed, the full model, though intellectually more satisfying, does not seem to fit 
these particular observations significantly better than results from the simpler 
model. 

(1 - 4) Ct = (D( 1 - 4) CZ), + C4t, (4.19) 

4 = 0 ( 2  = s ( t ) ) .  
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FTQURE 9. The non-dimensional growth rates A4 and A, (determined from (4.16)) and the 
constant solid fraction q5 for solidification from below with parameters as in figure 6. 
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FIQURE 10. The non-dimensional growth rates A4, A, and A, (determined by Worster 1986) with 
parameters as in figure 6. 

5. Cooling a binary alloy from above 
Additional fluid-mechanical effects occur if a two-component fluid that releases 

less dense fluid upon solidification is cooled from above. Some of these were identified 
and catalogued in THS, a study which is greatly extended in a series of recent papers 
by Kerr et al. (1989, 199Oa-c). In  these papers we developed theoretical models to 
describe new observations and we were able to compare the quantitative predictions 
of our analysis successfully against the results of our laboratory experiments with 
aqueous solutions of isopropanol and sodium sulphate. Kerr et al. (1989) presents a 
summary of the detailed analysis and experimental techniques described in Kerr 
et al. (1990a-c). I n  turn, this section highlights the new and important contributions 
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described in Kerr et ul. (1989) bearing in mind that a reader interested in any of the 
details can refer to Kcrr et al. (1990a-c) (after noting that some of tho notation is 
different). 

Consider first that  TB, the temperature of the roof a t  z = 0, is less than the liquidus 
temperature TL(Co), where C, is the initial composition of the melt, and greater than 
the eutectic temperature TE. Our experiments with aqreous isopropanol (with C, 
around 17 wt O/o isopropanol) in such circumstances led to  the formation of ice and 
the release of an isopropanol-enriched solution. Both the ice and the released solution 
were less dense than the original solution. A relatively light mushy ice layer, bathed 
in stagnant, isopropanol-enriched water, thus formed a t  the top of the container. 
This cold layer maintained turbulent thermal convection in the fluid below. 

We developed the following model to describe this general situation as sketched in 
figure 11, with the solid fraction q5 taken to be a function of both z and t .  Within the 
mush, conservation of heat is expressed by (4.18) and conservation of solute by (4.19) 
with the first term on the right-hand side neglected (formally, D set to  0) following 
the argument that since D K vertical diffusion of solute is negligible. As before, 
composition and temperature within the fluid of the mushy layer are coupled by the 
linear liquidus relationship (4.12). The appropriate interfacial conditions are those of 
marginal equilibrium (4.21) and conservation of heat across the boundary layer a t  
the moving interface between mush and melt (3.4). Below this interface the melt 
cools according to (3.3). Finally, to the boundary condition 

8 =  TB ( z = O )  (5.1) 

8 = T,, c= c, ( t  = 0). (5.2) 

must be added the initial conditions 

Solutions to this system of equations were determined numerically. Typical results 
are presented, with the label of equilibrium growth, in figure 12 which includes data 
from the experiments using aqueous isopropanol. At first sight the agreement 
between the theoretical predictions and the experimental data for both the position 
of the interface and the temperature of the melt appears to be very good (and bett,er 
than in figure 6!) .  On closer inspection, however, one notices that the measured 
temperature of the aqueous isopropanol was always below the predicted temperature, 
and after approximately 300 min. was also below the liquidus temperature - and by 
a fairly significant amount ( - 1 "C). That a melt must become locally supersaturated 
in order for solidification to occur is of course not at all new ; what wc wish to describe 
now is the incorporation of the concept of supersaturation into a model that relaxes 
the assumption that solidification occurs at thermodynamic equilibrium. Aside from 
leading to better agreement with experimental data, the predictions of the model 
have far-ranging consequences which include the conditions under which large bodies 
of melt, such as the molten rock (magma) contained in storage reservoirs within the 
Earth, can convect when cooled from above (Worster, Huppert & Sparks 1990). 

Non-equilibrium processes of crystal growth can be modelled by incorporating the 
concept that, away from thermodynamic equilibrium, the rate of growth of solid is 
directly related to the value of the local supersaturation. This concept has a rather 
broad and old foundation (see, for example, Kurz & Fisher 1986 for a general survey 
and Flood & Hunt 1987 for an explicit application which has some similarities with 
that presented here). Our experiments with aqueous isopropanol suggest the simple 
linear relationship 

S = 3(TL-!C) (Z = s ( t ) ) ,  (5.3) 
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FIGURE 11. Sketch of the temperature profile for a binary melt of initial depth H cooled from 
above to release melt whose density is less than that of the original melt. 
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FIGURE 12. (a) The thickness of the mushy layer, +), and (b) the temperature, T, of the aqueous 
isopropanol as functions of time. The dashed curves are the result of our theoretical model based 
on the assumption of thermodynamic equilibrium and the solid curves incorporate the kinetic 
growth law (equation (5.3)). The symbols represent the data from different experiments in which 
Co=83.2wt%H,0 ,  T,=4.0°C, TB=-170CandH=18.8cm. 
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with T, < TL, where TL is the liquidus temperature a t  the interface, T, is now the 
unknown solidification temperature a t  the interface and Y is an empirical constant, 
determined by us for aqueous isopropanol to be 2.2 x lop4 cm s-l "C-'. More 
complicated, nonlinear relationships for different substances have been suggested 
but we found that (5.3) represented a good fit for our data. 

The result of incorporating (5 .3)  into the numerical simulation of our experiments 
is shown labelled 'kinetic ' in figure 12. The theoretical predictions for the position of 
the solidification front are seen to be in excellent agreement wit'h the experimental 
data. Those for the temperature of the melt satisfactorily account for the occurrence 
and time of initiation of the supersaturation but are slightly less than the observed 
temperatures. We believe that the observed temperaturcs may have been slightly 
increased by heat gains from the laboratory. 

The fact that in the interior, the melt was a t  a temperature below its liquidus 
temperature, and was hence supersaturated, suggests that, were there nucleation 
sites for crystallization within the melt, there could have been growth additional to  
that which occurred in the mushy layer. This was not so in our experiments with 
aqueous isopropanol because the solid ice crystals were lower in density than the 
original melt and nucleation was not observed in the interior of the solution. On the 
other hand, our experiments with aqueous sodium sulphate formed relatively heavy 
sodium sulphate decahydrate crystals, some of which settled to the base of the tank 
leading to growth of solid a t  the floor. This illustrates the important concept that 
under suitable conditions, cooling a t  the roof of a container leads to  crystallization 
at  the floor remote from the site of cooling, as observed previously by THS and 
described by Brandeis & Jaupart (1986). A description of the theoretical model we 
dcveloped to account for the growth on the floor is presented in the next section. 

6. Compositional stratification in the solid 
Stratification of composition in the solid, or zoning as geologists sometimes call it ,  

that results from solidification of a multicomponent melt is important in many 
different situations. For it to result from a two-component melt, it is necessary that 
solidification of both component end members occurs. This can result from variation 
of composition along the solidus, though this is generally a small effect. Indeed for 
most aqueous solutions it is totally absent. More generally, compositional 
stratification can only arise if cooling takes place below the eutectic temperature, TE, 
the minimum temperature a t  which the melt can remain liquid, at least a t  
thermodynamic equilibrium. 

With the geometry considered in the last section, compositional stratification will 
result if TB is maintained below TE. In this case the thermal profile is as sketched in 
figure 13 to reflect the experimental evidence shown in figure 14 (plate 1) .  Com- 
mencing from the roof, the first layer, which occupies 0 < z < ,sE(t), consists of 
a composite solid made up of crystals of the two pure end members. The temperature 
a t  the boundary sE( t )  is the eutectic temperature TE. Heat is transferred by 
conduction through this layer and once the solid is laid down the composition is 
independent of time. Beneath this solid layer there is i~ stagnant mushy layer, just  
as before, which occupies sE( t )  < z < s( t ) .  The layer between z = s ( t )  and z = sf(t) is 
occupied by the turbplently convecting melt which transfers heat into the mushy 
layer. Finally, in s,(t) d z < H ,  secondary crystallization leads to a solid layer 
growing from the floor which we shall take to be of constant composition, say C,. 
With time the eutectic front at z = sE(t) reaches the solid layer growing from the floor 
and solidification is complete. 
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FIGURE 13. Sketch of the temperature profile for a binary melt of initial depth H cooled from above 
to release melt whose density is less than that of the original melt with the boundary maintained 
at a temperature that is below the eutectic temperature. 

We carried out a series of experiments using aqueous sodium sulphate in order to 
investigate the situation described above (Kerr et al. 1989, 1 9 9 0 ~ ) .  The results of our 
experimental observations and our theoretical predictions, using the fitted value of 
Y = 1.5 x em s-l O C - '  for aqueous sodium sulphate, are shown for a typical 
experiment in figure 15. Figure 15 ( a )  indicates that the thickness of each of the three 
layers that  are either partially or totally solid grew with time in good agreement with 
the theoretical predictions. From figure 15(b) we see that there is good agreement 
between our theoretical curves and experimental data for the temperature of the 
melt as a function of time. For comparison we also draw in the liquidus temperature 
a t  the initial concentration. The mean composition in the composite layer decreased 
with depth from the roof, as is depicted in figure 15 (c), owing to the gradual decrease 
in composition of the melt throughout the experiment. There is a discontinuity in 
mean composition a t  the height where the downward-growing mushy layer met the 
upward-growing crystal layer from the floor. The measured compositional profile was 
fairly well predicted by the theory. 

A more complicated situation arises, and new concepts are introduced, on 
consideration of the cooling from below of a melt that  releases less dense fluid on 
solidification. If the appropriate compositional Rayleigh number is sufficiently large, 
as we shall assume, compositional effects in this case lead to vigorous mixing of the 
melt. Aside from the compositional transfers associated with this mixing, there are 
important thermal transfers to which the compositional transfers are coupled. The 
coupling arises because the compositional flux determines the intensity of the 
convective motions in the melt, which in turn determines the thermal flux. This flux 
regulates the solidification rate and thus the rate a t  which less dense fluid is released ; 
that  is, the compositional flux. Part of the aim of an investigation by Woods & 
Huppert (1989) was to study the relationship between the compositional flux from, 
and the thermal flux towards, the interface between melt and solid. 

The geometry of our model and the generated profiles of temperature and 
composition are depicted in figure 16. For simplicity, we neglected all effects due to 
non-equilibrium thermodynamics and to the formation of a mushy layer a t  the top 
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FIGURE 15. The predicted results and experimental data  for cooling an aqueous solution of Ka,SO, 
from above for the same values of the physical parameters as in figure 14. (a) Height of the three 
interfaces as functions of time; ( b )  temperature of the liquid as a function of time, and ( c )  
composition of the final solid product as a function of depth. 

of the crystal pile. Neglecting the latter was an outcome of our experiments with 
aqueous Na,CO, for which the observed mushy layer was only of order 1 mm thick. 

The compositional flux F, was determined by assuming that the four-thirds law of 
turbulent thermal convection (cf. (3.3)) can be suitably modified to cover turbulent 
compositional convection by writing 

F, = yc  c(gPD'/lv);Ad, (6.1) 

where P is the fractional increase in melt density per unit increase in composition, AC 
the compositional change across the compositional boundary layer on top of the solid 
layer and yc an empirical constant which may be different from y because of the 
different boundary conditions on heat and composition. Since the turbulent intensity 
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FIQURE 16. Sketch of the temperature and composition profiles for a binary melt of initial depth 
H cooled from below to release melt whose density is less than that of the original melt with the 
boundary maintained at below the eutectic temperature. 

drives both the thermal and compositional transfers, the non-dimensional heat flux, 
or thermal Nusselt number, FT H/cKAT, associated with the compositional flux, will 
be linearly proportional to the compositional Nusselt number F, HIcDAC. The 
functional relationship, however, may possibly involve the Prandtl number and the 
ratio of the thermal and compositional diffusivities as well as whether the melt is 
undersaturated or saturated, since for the latter the temperature and composition in 
the melt are coupled by the liquidus relationship. Mathematically, this means that 

where f may depend not only on the explicit parameters displayed but also on 
whether the melt is saturated or undersaturated. When the melt is saturated AT = 
m,AC if the liquidus relationship is assumed to be linear. Woods & Huppert (1989) 
also presented three tentative physical models of the behaviour of the boundary 
layer at the interface which suggested explicit formulae for f. 

The governing equations can then be formulated as follows. Within the solid, the 
temperature field satisfies the linear equation of heat conduction. However, in order 
to simplify the analysis, we replaced this with the linear temperature profile 

This is a good approximation to the full solution of the heat-conduction equation 
provided that effects due to thermal conduction propagate more rapidly than does 
the interface between melt and solid. That is, provided s << ( ~ , t ) f .  This inequality is 
generally well satisfied (see, for example, THS and Huppert & Sparks 1988). The 
incorporation of (6.3) greatly simplifies the analysis because the remaining equations 
are all ordinary differential equations in time and- no partial differential equations 
need be solved. At the interface between the melt and the solid, conservation of heat 
requires that (cf. (3.4)) 
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where 11. and C, are the composition of the melt and eutectic respectively and J, = 
yc(gBDz/v)~, while conservation of matter requires that 

(C,-$)B = Jc($-C,)i, (6.5) 

where C, is the composition of the solid. Within the melt the thermal balance can be 
written as (cf. (3.3)) 

( H - s ) 8  = - fJ , (€J-T , ) (~-C, )~ ,  (6.6) 

while conservation of matter requires that 

(H-s)Cm = -Jc(@-CE)%. (6.7) 

The system for the four unknowns 6, $, C, and 
to the initial conditions 

represented by (6.4)-(6.7) is subject 

where T, and C, are respectively the initial temperature and concentration of the 
melt. Equations (6.4)-(6.8), with the one free parameter f, can be integrated 
numerically (either with or without suitable non-dimensionalization) to lead to 
theoretical predictions against which laboratory data can be compared. 

From experiments with aqueous sodium carbonate, with a fixed value of K,/D and 
v/K,, we found that the data were best fitted by taking f = 3 when the melt was 
undersaturated and f = 1 when saturated. The results of a particular integration of 
(6.4)-(6.8) are graphed in figure 17 and compared with our laboratory data. In  figure 
17 (a, b ) ,  which present comparisons for temperature and composition in the melt and 
the height of the solid as functions of time, the agreement between theory and 
experiment are quite good. The agreement in figure 17(c),  which presents the 
composition of the solid as a function of depth, is not as good, but still quite 
reasonable. The various segments in the theoretical curve indicate the different fluid 
regimes under which the solid was formed. For s < 2.4 cm (t  < 150 min) we predicted 
that the melt would be undersaturated. Beyond these limits saturation was 
predicted. The various segments of the theoretical curve of figure 17(c) took up 
different shapes dependent on the relative balance between the convective and latent 
heat terms on the right-hand side of (6.4). For most of the segment labelled 1, latent 
heat was dominant. With time, its relative effect weakened, which lead to the 
decrease of the composition of the solid with height as convective effects became 
dominant along the segment marked 2. At the end of this the melt became saturated 
at which time the model (discontinuously) reduced f from 3 to 1 along the segment 
marked 3. In reality f will change more gradually and non-equilibrium effects will 
also occur, which explains the lack of agreement between theory and experiment a t  
this point. The concentration of the solid thereafter adjusted rather rapidly a t  first 
to accommodate the discontinuity in the model. Subsequently, along the rest of the 
segment marked 4, the concentration in the solid slowly decreased as the temperature 
and concentration of the melt decreased. 



The f luid mechanics of solidi$cntion 229 

9.0 

8.5 

8.0 

7.5 

7.0 

t (min) 

t (min) 

14 - 
12 - 

10 - 

8 -  

4 6 -  

h 

v E, 

2 4 -  
.- 

2 -  
1 

0 5 10 15 20 25 

wt % Na2C0, 

FIGURE 17. The predicted results and experimental da ta  for cooling an aqueous solution of Na,CO, 
froin below with C, = 9.34 w t %  Na,CO,, T, = 19.4 "C, T, = -20 'C and H = 22 cm. (a)  Tem- 
perature and composition in the liquid as functions of time; (6) thickness of the solid layer as a 
function of time; and ( c )  composition of the final solid product as a function of depth. 
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7. The crystallization of aqueous ammonium chloride 
To readers new to the subject it will appear strange that a particular aqueous salt 

is considered in a section by itself. Many laboratory experiments, originating with 
that described by Copley et al. (1970), however, indicate that the formation of NH,C1 
crystals by the cooling of an aqueous ammonium chloride solution from below 
proceeds in a different way from the solidification of almost all other salts. In 
particular, as we shall discuss at greater length below, a deep and rather ordered 
mushy layer results with definite ‘chimneys’ through which all the less dense, 
released fluid is channelled. The original impetus by Copley et al. (1970) was due to 
the similarity between these chimneys and ‘freckles’ - long finger-like regions of 
compositional segregation -which are often observed in castings of steel and binary 
alloy systems such as aluminum-copper, lead-tin and nickel-aluminum. These 
freckles represent undesirable imperfections in the casting. Both because of the 
metallurgical importance and because of the pure scientific interest, it could be said 
that one of the ‘ prizes ’ of the subject is a thorough understanding of the phenomena 
observed in aqueous NH,CI. Furthermore, there are possible applications to the 
formation of the solid inner core of the Earth. 

The laboratory experiment is easy to perform and makes a simple and attractive 
fluid-dynamical demonstration. An aqueous ammonium chloride solution of 
composition more concentrated than the eutectic value (20 w t % ) t  is placed in a 
suitable container (a glass beaker will do) and cooled from below - by placing the 
beaker in a cold brine solution, for example. After a short while a partially solid layer 
of pure NH4C1 crystals forms and the thickness of the layer gradually increases. The 
NH,C1 solution above the crystals remains continually undersaturated, as is 
indicated in figure 18(a). This is in marked and important contrast to the 
supersaturated solution which quickly develops above the solid formed on the 
cooling of any other aqueous solution whose concentration is beyond the eutectic 
value, as indicated for the particular example of Na,CO, in figure 18(6). In  the case 
of NH,C1 the circulation consists of isolated buoyant plumes (see figure 19a, plate 2) 
which drive a return flow of the undersaturated solution. This slowly migrates 
towards the layer of crystals and flows down into it. Because the flow through the 
crystals takes place in a decreasing temperature field, the aqueous solution becomes 
saturated and builds up further pure NH,Cl crystals, which exhibit beautiful 
secondary and tertiary branching, as depicted in figure 19 (b)  (plate 3). The NH,CI- 
depleted solution from a wide area flows to a central point and the less dense return 
flow takes place through a few isolated chimneys, as indicated in figure 19(a, c)  
(plates 2, 3). With time some chimneys ‘die’ and the overall intensity of the 
convective motion decreases as the thickness of the mushy layer increases. This flow 
pattern is quite different from that produced by all other aqueous solutions, as shown 
for the typical example of Na,CO, in figure 20 (plate 3). 

I n  my opinion, no satisfactory quantitative model of the flow, evolution of the 
chimneys and growth of the crystals has yet been proposed, although interesting 
attempts at the full problem have been presented by Roberts & Loper (1983) and 
Fowler (1985). There is not even agreement as to  why the phenomena described occur 
only for NH4Cl solutions. Indeed, I have heard i t  said that chimneys can be seen 
under suitable conditions for all solutions, though in a variety of experiments with 

t At 20 “C the liquidus is at 28 wt YO and the solution needs to be initially warmed from room 
temperature if a solution of greater concentration is desired. 
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FIQURE 18. Temperature in the liquid as a function of its concentration for (a) KH,CI and (b)  
Na,CO,. The curves are the liquidii and the crosses are experimental data. The experiments started 
at 0.  

numerous salts I have never observed chimneys other than for aqueous NH4C1. 
Included among the suggested explanations of why NH4C1 is special are : the crystal 
mush is of low solid fraction ; the energy of formation is high ; the crystal has no water 
of hydration (though this is true of other crystals); the liquidus curve is particularly 
steep ; the concentration of NH4Cl a t  the solidus is so much larger than that in the 
original solution ; and that NH,C1 crystals are much less faceted than those of all 
other salts. 

8. Cooling at a sidewall 
Cooling and crystallizing a melt from the side requires another spatial dimension 

to  be considered because horizontal thermal and compositional gradients interact 
with the predominantly vertical flow of released fluid due to the vertical orientation 
of gravity. The situation of pure cooling (or heating) without crystallization at a 
semi-infinite wall is by now a classical problem in fluid mechanics (see, for example, 
Ostrach 1964 or Chapman 1984). The inclusion of crystallization adds two new 
effects - one due to the presence of compositional influences in addition to thermal 
influences and the other due to the moving boundary between solid and melt. The 
incorporation of both these effects together has resisted analytical investigation. On 
the assumption that the effects of crystallization can be treated by specifying a 
thermal and compositional anomaly a t  the (fixed) wall, and hence neglecting the 
solid regime that is formed, a number of authors have presented boundary-layer 
analyses of flow past a vertical wall in an infinite fluid (Nilson & Baer 1982; Spera, 
Yuen & Kemp 1984; Nilson 1985; Nilson, McBirney & Baker 1985). 

All these studies have focused on the situation for which the density anomaly at  
the wall due to  temperature, ApT, is positive, which corresponds to a cooled wall and 
by itself would induce downwards motion, while the density anomaly at the wall due 
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to composition, Ap,, is negative, which corresponds to the release of Less dense fluid 
and by itself induces upwards motion. This situation has received maximum 
attention because it is the one most relevant to  a geological context. It is also the one 
that arouses most fluid-mechanical interest because of the inherent possibility of a bi- 
directional boundary layer. In  the limit D < K 3 v three separate boundary-layer 
regions can be discerned. In the inner region, which is closest to the wall, 
compositional buoyancy forces due to compositional differences balance viscous 
forces. Beyond this, in an intermediate region, buoyancy forces due to thermal 
differences balance viscous forces. Finally, in the furthest region, the inner and 
intermediate motions are responded to by viscous coupling with the inertia forces. 
The flow and relative strengths of the boundary layers depend on only three external 
parameters : the Prandtl number Pr = v / K ;  the ratio of the diffusivities 7 = D / K ;  and 
the (positive) ratio r = -ApT/ApC. For sufficiently small r compositional effects 
overpower thermal effects and the entire flow is predicted to be upwards. For 
sufficiently large r thermal effects dominate and the entire flow is downwards. For 
intermediate values of r a bi-directional motion results, with an upwards inner flow, 
and a downwards intermediate flow. For large Pr, Nilson (1985) showed that the bi- 
directional flow occurred whenever 0.627 < r < 1.097;. On the further assumption 
that 7 1, as is typically the case, Nilson used asymptotic expansions to match the 
inner upward-flowing boundary layer, whose width increased as xi, where x is 
distance from the base of the wall, to the very much thicker downward-flowing 
boundary layer whose width increased as (1,-x)~, where L is the total length of the 
wall. A typical example of the resulting self-similar vertical velocity, adapted from 
Nilson et al. (1985), is drawn in figure 21. 

A similar calculation assuming that the flow takes place in a porous medium has 
been conducted by Lowell (1985) who also suggests that the value of r determines 
whether the flow is all upwards or all downwards or takes place in a bi-directional 
boundary layer. Such bi-directional boundary-layer flows are fairly easy to set up 
and visualize in a laboratory experiment. 

These analytical calculations have all assumed that the ambient conditions far 
from the wall are constant. If the wall is part of a container, the boundary-layer flows 
alter the environment and in turn are altered by it. This brings about new 
phenomena. Some of these have been investigated from an experimental point of 
view (see, for example, McBirney 1980; Turner 1980; Turner & Gustafson 1981; 
McBirney, Baker & Nilson 1985 and Leitch 1987), while the work of Thompson & 
Szekely (1987, 1988) is, to my knowledge, the only theoretical study yet published. 
The latter authors also conducted laboratory experiments with which to compare 
their numerical calculations. 

The major conclusion of all these studies is that  solidification from the side of an 
initially homogeneous solution results in the formation of a vertical composition 
gradient in the melt. The gradient results from the convection driven by t h e  fluid 
released on solidification, whether it be more or less dense than the original fluid. 
Cooling a vertical compositional gradient from the side leads tro an array of nearly 
horizontal double-diffusive layers separated by sharp interfaces (see, for example, 
Huppert & Turner 1980 and references therein). A photograph of a typical experi- 
ment, showing the layering and somewhat irregular interface between fluid and 
solid, appears as figure 22 (plate 4). Figure 23, kindly given to me by Mollie Thompson, 
is the result, of her numerical calculations of a similar situation, though the explicit 
values of the physical parameters are different. The initial development of double- 
diffusive layers in the calculations is clearly evident, but more computer time would 
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FIGURE 21. The self-similar vertical velocity as a function of distance from a wall which is 
maintained a t  a decreased temperature and an increased composition over the far-field value. 

Stream function 

FIGURE 23. The result of numerical calculations performed by M. E. Thompson on cooling an 
aqueous solution of Na,CO, at a sidewall. 

be needed to simulate the further evolution. My student, Richard Jarvis, is currently 
developing a more general and powerful numerical program, which we hope will 
provide useful and interesting results in the future. 

Aside from the stratification set up in the fluid, there is also compositional 
stratification in the resulting solid product. In her dissertation, Leitch (1985) 
extended the earlier pioneering work of Turner & Gustafson (1981) to  discuss 
experiments in which initially uniform solutions of aqueous sodium carbonate were 
cooled from a sidewall of a tank 16 x 20 x 15 em high. The refrigeration unit that 
provided the coolant was operated at  its maximum power ; thus the temperature of 



234 H .  E .  Huppert 

Insulated 

FIGIJRE 24. The distribution of composition, in units of kg of Na,CO,.10 H,O per m3 of solution, 
in the solid product obtained by cooling an initially homogeneous aqueous solution of Na,CO, at 
a vertical wall. The initial composition was 11 1 kg of Na,CO,.10 H,O per m3 of solution. (a )  The 
concentration in the middle plane of'the tank, parallel t o  two insulated sides ; ( b )  the concentration 
in half the transverse section at, the insulated end of (a) .  

the cold wall was not controlled (though i t  was  recorded). The resulting distribution 
of composition in the solid, measured a t  the end of the experiment for which the 
initial concentration of Na,CO, was less than the eutectic value, is shown in figure 24. 
Considerable spatial variations in composition, both in the horizontal and in the 
vertical, are clearly evident, though these variations are not yet quantitatively 
understood. Similar variations in the resulting solid composition were reported by 
Hebditch (1975), who solidified melts composed of lead and tin by cooling them a t  
a vertical wall. The broad similarity between the results of these two sets of 
experiments indicate that the phenomena seen in aqueous salt solutions are 
replicated in other fluids with widely different properties. 

9. Crystallization on a slope 
Many of the principles enunciated in the previous sections are displayed in the 

study of crystallization resulting from cooling a t  a slope. I n  a series of experiments 
reported in Huppert et al. (1986, 1987) we inserted a cooling plate a t  an angle to the 
vertical into the interior of an aqueous solution. A particularly illustrative case is 
that in which the slope is a t  45" to the vertical and is inserted symmetrically into the 
container. The slope then divides the fluid into two geometrically identical regions. 
If convective effects were absent, solidification would proceed identically in the two 
regions. However, as can be seen in figure 25 (plate 4), the influence of convection is 
dominant though different in the two regions. 

In  some of the experiments we used an initially homogeneous solution of sodium 
carbonate whose concentration was greater than the eutectic value. In both regions 
less dense fluid was released by the crystallization on the upper and lower surfaces 
of the cooling plate. Above the plate the released fluid was free to rise and did so in 
a swics of plumes which mixed with the environment to  produce a complicated large- 
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FIGURE 26. The distribution of composition, reproduced from Huppert et al. (1987), in units of wt % 
Na,CO,, in the solid product obtained by cooling an initially stratified aqueous solution of Na,CO, 
at  a 45" slope. The initial composition increased linearly from 6 wt Yo a t  the top of the tank to 
13 wt YO at the bottom. The solidification front after 55 hours is indicated by . . . . and after 73 hours 
by -.-.-, 

scale flow. Part of the flow consisted of strong motions up the slope of fluid from the 
interior entrained into the boundary layer and drawn towards the sites of 
crystallization. Another part of the flow was driven by the horizontal density 
gradients set up by the different heights of the plumes and hence different amounts 
of mixing along the slope. The released fluid which formed below the plate, on the 
other hand, was not free to  rise because of the constraint of the overlying plate. The 
fluid slowly migrated through the crystal mush and was deposited a t  the top of the 
layer. Because of the cooling, the temperature of the interior decreased with time and 
so the density of the released fluid decreased also, in accord with the phase diagram 
of figure 1. Thus newly released fluid flowed to the top of the region and displaced 
downwards the fluid previously deposited there, just as in the now classical 'filling- 
box' situation (Baines & Turner 1969; Worster & Leitch 1985 and Baines, Turner & 
Campbell 1990). As in that situation, the sharp interface between the released fluid 
and the initial fluid propagated downwards and a quite strongly stratified, virtually 
stagnant fluid region evolved above the interface. As seen in figure 25, the 
macroscopic crystal structure took three forms: above the slope there was a very 
smooth interface between the crystals and the fluid due to  the strong up-slope 
motions in the latter; in the lower part of the downward-facing surface, the interface 
was fairly convoluted owing to the fluid being irregularly crystallized at randomly 
oriented nucleation sites, while in the upper part of the surface there were much 
longer crystals and a more convoluted interface. With time, the interface in the left- 
hand region reached the bottom and eventually all the remaining fluid to the left of 
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the slope was a t  the eutectic composition. In  the right-hand region, horizontal 
thermal and compositional gradients induced the ubiquitous double-diffusive 
layering and strong velocity gradients. (These are just beginning to form at the time 
the photograph in figure 25 was taken.) 

Experiments which commenced with a vertical gradient of composition (Huppert 
et al. 1987) showed again that vertical density gradients have a strong restraining 
influence on compositional convection. A series of double-diffusive layers evolved, 
with thin plumes only occasionally penetrating one of the interfaces. Owing to the 
large molecular diffusivity of heat in comparison with that of composition, the 
circulation in the double-diffusive layers was controlled by thermal effects, even in 
regions where the plume motion due to compositional convection partially opposed 
the sense of motion. The compositional variations in the solid resulting from one 
experiment are shown in figure 26. 

There are clearly a number of fluid-dynamical aspects of this situation that need 
quantitative investigation. It would be fruitful to construct a numerical program 
that incorporates the strong convective flows in the melt, the dynamics of the mushy 
zone behind the crystallization front and the possibility of compositional strati- 
fication in the solid product. Such an advance represents a challenging task for the 
future. 

10. Applications 
Although there are obviously many different industrial and natural applications of 

the concepts outlined in the previous sections, to  discuss them at  length here would 
unbalance the overall presentation. There appear to be four main broad areas of 
application : metallurgy, geology, geophysics and crystal growth. We expand on each 
of these in one or two paragraphs below. 

The formation of solid castings from liquid melts is a central area of metallurgy. 
A knowledge of the time taken for solidification to be completed can have large 
financial consequences. In addition, the strength of the final product may depend 
critically on the existence of any macroscopic inhomogeneities. These can result from 
convection within the mould, which as well as influencing the macroscopic form of 
the final product (cf. figure 25) can also determine the final deposition site of any 
small impurities in the original melt that do not easily solidify, or may even be 
totally incompatible. 

My own interest in solidification problems originally arose from a geological 
context. Approximately 20 km3 of molten rock or magma are produced within the 
Earth each year and this melt solidifies in magma chambers, along lava flows and 
during volcanic eruptions. Geologists use the data they collect from the resulting 
solid rock suites as a means of understanding the processes that take place within the 
Earth. Fluid mechanics clearly is an essential ingredient, although it was rather 
neglected by geologists until recently (see, for example, Huppert 1986 for an 
elaboration of this argument). The idea that the compositional zonation which is 
observed in rock suites could have been formed in the original fluid state (cf. figure 
22) rather than in the solid state was initially put forward by Chen & Turner (1980) 
in a paper which can be considered as the commencement of a systematic attempt 
to introduce fluid-mechanical concepts into geology. This has led to an understanding 
of the formation of numerous rock suites around the world, some of wh.ich have 
associated ore deposits (see THS). 

The core problem in geophysics that is probably determined by solidification is an 
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explanation of how the magnetic field of the Earth is maintained. A popular view a t  
the moment, first proposed by Braginskii (1963), is that the solidification of the solid 
inner core releases less dense fluid which rises through the liquid outer core. In  doing 
so, Coriolis forces, due to the rotation of the Earth, and Lorentz forces, due to the 
motion of a conducting medium through an existing magnetic field, combine to 
maintain the geodynamo. There is still much to be quantitatively understood before 
this view can be demonstrated to be correct. 

More needs to be known about the formation of both the solid inner core and the 
mushy layer which may well be associated with it. A series of papers has attempted 
to develop a general thermodynamic approach of the formation of mushy layers and 
slurries and then apply the results to an investigation of the processes that occur a t  
the inner core boundary (see, for example, Loper & Roberts 1978, 1980; Loper 1983 
and Hills, Loper & Roberts 1983). However, in my view at  least, because the theory 
is so general and the number of explicit solutions derived from it  so few, with no real 
experimental tests yet considered, it is not currently possible to know how applicable 
most of the approximations built into the model are. Another question, which is 
virtually unexplored, is how the rising buoyant plumes arc influenced by rotation, 
though an investigation in terms of fluid parcels has been commenced by Moffatt 
(1989). 

To crystal growers, obtaining a uniform final solid product is one, if not the most, 
essential aspect of their craft. Instabilities, convection, mushy zones, and 
compositional stratification are all anathema to them. By understanding under what 
conditions such fluid-mechanical effects can occur, the crystal grower has taken the 
first step in understanding how to eliminate them. 

11. Conclusions 
We conclude that fluid-mechanical effects can play a dominant role in many 

solidification problems. This paper has concentrated on reviewing one approach to 
the subject, namely a systematic development of the concepts involved when a liquid 
is uniformly cooled a t  a flat surface. Further investigations using this approach could 
be interestingly contemplated. The investigations could include the determination of 
a full quantitative understanding of both the effects due to cooling at  a sloping 
surface and the influence of initial compositional stratification in the liquid. In 
addition, different approaches to problems in phase transitions, some briefly 
described and referenced in this review, can be fruitfully extended. In  short, there is 
still much of interest to be uncovered regarding the fluid mechanics of solidification 
considered from any of the points of view traditionally taken up by applied 
mathematicians, crystal growers, engineers, geologists, geophysicists or physicists. 

It is a pleasure to dedicate this review to my colleague and mentor, George 
Batchelor. His leadership, inspiration and encouragement of research over a broad 
range of fluid mechanics has helped make my 21 years in Cambridge extremely 
exciting and rewarding. Helpful reviews of earlier drafts were given to me by S. H. 
Davis, I). T. J. Hurle, R. A. Jarvis, R. C. Kerr, A. R. McBirney, J .  S. Turner, A. W. 
Woods and M. G. Worster, to all of whom I am grateful. Mark Hallworth has 
unstintingly helped with all my experiments described here and produced almost all 
the figures. My research is supported by the British Petroleum Venture Research 
Unit. 
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